HONORS Ch.1 Review #2

NAME:

NO CALCULATOR !! CLEARLY SHOW ALL WORK !! NO DECIMALS !!

1. State the domain of each function.

a)
$$f(x) = \sqrt{9x-3}$$
 b) $f(x) = \sqrt{11-2x}$ c) $f(x) = \sqrt{16-8x}$

d)
$$h(x) = \frac{1}{x^2 - 25}$$
 e) $h(x) = \frac{12x}{x^2 - 8}$ f) $h(x) = \frac{3x - 4}{7 - x^2}$ g) $h(x) = \frac{x}{\sqrt{3x - 7}}$

CHECK ANSWERS#1-11	2. Simplify the expression.	3. Simplify the expression. Eliminate
$x \le \frac{11}{2}$ $x \ge \frac{1}{3}$ $x > \frac{7}{3}$	$(2x^3)^9 \left(\frac{3}{8x^5}\right)^2$	any negative exponents. $\left(\frac{8}{-}m^{-2}n^{9}p\right)\left(\frac{1}{-}n^{2}p^{-5}\right)^{-2}$
$x \le 2$ $x \ne \pm \sqrt{7}$ $x \ne \pm 2\sqrt{2}$		$(3^{m} p)(3^{n} p)$
$x \neq \pm 5$ $72x^{17}$ $\frac{\sqrt{17} - \sqrt{3}}{7}$		
$x^{2}(3x+2)(x-7)$ $4\pm\sqrt{3}$		
$8^{7x+2} 8^{x-3} 8xy^{\frac{13}{15}}$ $m^{26}n^{34} m^2p \sqrt[4]{n^3} \frac{24n^5p^{11}}{m^2}$	4. Simplify the expression. $32^{\frac{3}{5}} \cdot x^{\frac{1}{4}} \cdot x^{\frac{3}{4}} \cdot y^{\frac{2}{3}} \cdot y^{\frac{1}{5}}$	5. Simplify the expression. Leave in simplified radical form. $\sqrt[4]{m^5n^2p^3} \cdot \sqrt[4]{m^3np^1}$
6. Simplify the expression. Eliminate any negative exponents. $\frac{(m^2n^5)^{-3}(m^5n^7)^8}{m^8n^7}$	7. Simplify by writing as a single base using laws of exponents. Clearly show each step. $\frac{8^{4x-1}}{8^{3x+2}}$	8. Simplify by writing as a single base using laws of exponents. Clearly show each step. $8^{x+2} \cdot (8^3)^{2x}$
9. Factor the expression completely. $3x^4 - 19x^3 - 14x^2$	10. Rationalize the denominator and simplify. Be sure to properly use parentheses when applying the conjugate. $\frac{2}{\sqrt{3} + \sqrt{17}}$	11. Solve for x by completing the square: $x^2 - 8x + 13 = 0$

CHECK ANSWERS#12-17		
$\frac{11}{25} - \frac{23}{25}i \qquad -\frac{3}{2} \pm \frac{\sqrt{3}}{2}i \qquad \left(-\frac{1}{2}, \frac{3}{2}\right) \qquad -\frac{3}{2}i = \frac{\sqrt{3}}{2}i \qquad \left(-\frac{1}{2}, \frac{3}{2}\right) \qquad -\frac{3}{2}i = \frac{\sqrt{3}}{2}i = \sqrt{$	$\frac{x-2}{(2x-3)} \qquad \sqrt{98} \rightarrow so \ 7\sqrt{2} \qquad 4 \qquad \frac{11}{2}$	
12. Simplify the expression by factoring completely. $\frac{2x^3 - x^2 - 6x}{8x^3 - 18x}$	13. Use the least common multiple to cancel the denominators, then combine like terms and solve for x. $\frac{4}{x-1} = \frac{35}{x^2-1} - \frac{2}{x+1}$	
14. Solve $x^2 + 3x = -3$ using the quadratic formula. Express your solution in the form $a \pm bi$.	15. Simplify the expression and write the result in the form $a + bi$. Be sure to use parentheses properly in the numerator and denominator. $\frac{5-i}{3+4i}$	
16. For the points (-4, 5) and (3, -2):(a) Find the distance between them.	17. Solve for x by isolating the radical, then square both sides using parentheses. Check for extraneous solutions. $\sqrt{5-x} + 1 = x - 2$	
(b) Find the midpoint of the line segment that joins them.		