1. State the domain of each function.
a) $f(x)=\sqrt{9 x-3}$
b) $f(x)=\sqrt{11-2 x}$
c) $f(x)=\sqrt{16-8 x}$
d) $\mathrm{h}(\mathrm{x})=\frac{1}{x^{2}-25}$
e) $h(x)=\frac{12 x}{x^{2}-8}$
f) $h(x)=\frac{3 x-4}{7-x^{2}}$
g) $h(x)=\frac{x}{\sqrt{3 x-7}}$

| CHECK ANSWERS\#1-11 $\begin{array}{lll} x \leq \frac{11}{2} & x \geq \frac{1}{3} & x>\frac{7}{3} \\ x \leq 2 & x \neq \pm \sqrt{7} & x \neq \pm 2 \sqrt{2} \end{array}$ | 2. Simplify the expression. $\left(2 x^{3}\right)^{9}\left(\frac{3}{8 x^{5}}\right)^{2}$ | 3. Simplify the expression. Eliminate any negative exponents. $\left(\frac{8}{3} m^{-2} n^{9} p\right)\left(\frac{1}{3} n^{2} p^{-5}\right)^{-2}$ |
| :---: | :---: | :---: |
| $\begin{array}{lll} x \neq \pm 5 & 72 x^{17} & \frac{\sqrt{17}-\sqrt{3}}{7} \\ x^{2}(3 x+2)(x-7) & 4 \pm \sqrt{3} \end{array}$ |  |  |
| $\begin{aligned} & 8^{7 x+2} \quad 8^{x-3} \quad 8 x y^{\frac{13}{15}} \\ & m^{26} n^{34} \quad m^{2} p \sqrt[4]{n^{3}} \quad \frac{24 n^{5} p^{11}}{m^{2}} \end{aligned}$ | 4. Simplify the expression. $32^{\overline{5}} \cdot \mathrm{x}^{\overline{4}} \cdot \mathrm{x}^{\overline{4}} \cdot \mathrm{y}^{\overline{3}} \cdot \mathrm{y}^{\overline{5}}$ | 5. Simplify the expression. Leave in simplified radical form. $\sqrt[4]{m^{5} n^{2} p^{3}} \cdot \sqrt[4]{m^{3} n p^{1}}$ |
| 6. Simplify the expression. Eliminate any negative exponents. $\frac{\left(m^{2} n^{5}\right)^{-3}\left(m^{5} n^{7}\right)^{8}}{m^{8} n^{7}}$ | 7. Simplify by writing as a single base using laws of exponents. Clearly show each step. $\frac{8^{4 x-1}}{8^{3 x+2}}$ | 8. Simplify by writing as a single base using laws of exponents. Clearly show each step. $8^{x+2} \cdot\left(8^{3}\right)^{2 x}$ |
| 9. Factor the expression completely. $3 x^{4}-19 x^{3}-14 x^{2}$ | 10. Rationalize the denominator and simplify. Be sure to properly use parentheses when applying the conjugate. $\frac{2}{\sqrt{3}+\sqrt{17}}$ | 11. Solve for $x$ by completing the square: $x^{2}-8 x+13=0$ |

## CHECK ANSWERS\#12-17

$$
\frac{11}{25}-\frac{23}{25} i \quad-\frac{3}{2} \pm \frac{\sqrt{3}}{2} i \quad\left(-\frac{1}{2}, \frac{3}{2}\right) \quad \frac{\mathrm{x}-2}{2(2 \mathrm{x}-3)} \quad \sqrt{98} \rightarrow \text { so } 7 \sqrt{2} \quad 4 \quad \frac{11}{2}
$$

12. Simplify the expression by factoring completely.

$$
\frac{2 x^{3}-x^{2}-6 x}{8 x^{3}-18 x}
$$ your solution in the form $a \pm b i$.

13. Use the least common multiple to cancel the denominators, then combine like terms and solve for x .

$$
\frac{4}{x-1}=\frac{35}{x^{2}-1}-\frac{2}{x+1}
$$

15. Simplify the expression and write the result in the form $a+b i$. Be sure to use parentheses properly in the numerator and denominator.

$$
\frac{5-i}{3+4 i}
$$

17. Solve for x by isolating the radical, then square both sides using parentheses. Check for extraneous solutions.

$$
\sqrt{5-x}+1=x-2
$$

